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Abstract-Nonlinear circular membrane responses under partial and full ponding loads have been
solved by the fourth-order Runge-Kulla numerical integration and by finite element simulation
with good accuracy. Under partial ponding loads, a discontinuity exists in the curvature of the
deformed membrane at the fluid boundary while an inflection point forms inside the ponding. An
iterative finite element algorithm has also been developed for solvmg membrane ponding problems
where inelastic material response becomes significant. The finite element simulation procedure was
proven to be accurate when validated against test data from membrane forming experiments.
~~) 1997 Published by Elsevier Science Ltd.

I. INTRODUCTION

Solutions for circular membranes under ponding loads are scarce in the literature, par
ticularly when material response becomes inelastic. The load-deflection relation is strongly
nonlinear in that the deformed shape ofa membrane depends on the volume and distribution
of the fluid, which, in turn, depends on the deformation. Practical implications include
ponding on air-supported roofs (Szyszkowski and Glockner 1984), floating caps of oil
storage tanks (Epstein 1980; Epstein and Strnad 1985), and optical reflector forming using
ponding loads (Tuan and White 1990).

This paper focuses on large deformations and strains of initially flat, simply supported
circular membranes under gradually accumulated fluid pressure due to ponding. Governing
equations of elastic membranes under partial and full ponding loads were derived from
variational energy considerations. The fourth-order Runge-Kutta numerical integration as
well as an iterative finite element analysis using shell elements was conducted for elastic
membrane response analysis. The same iterative finite element solution algorithm, validated
against results from numerical integration, was also used for inelastic membrane response
prediction of a forming experiment. Deformations and stresses ofa stainless steel membrane
under ponding loads were measured and the experimental data compared very closely with
analytical results.

2. ELASTIC MEMBRANES UNDER PARTIAL AND FULL PONDING

It is of primary interest to determine the deformation and stresses in a membrane for
a given volume of ponding fluid. Provided that the membrane is initially taut with negligible
tension, the deflection of a point on the membrane after ponding has taken place can be
resolved into a radial component u(r) and a vertical component w(r), as illustrated in
Fig. 1.

The total potential energy of the system, n, is composed of strain energy of the
membrane, Um' and potential drop of the ponding load, n :

(1)

The elastic strain energy of a circular membrane can be expressed in terms of its radial and
circumferential strains:
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Fig. I. Membrane deformation under ponding load.
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(2)

where the Young's modulus, Poissons ratio, radius and thickness of the membrane are
denoted by E, v, a and t, respectively. The location of the fluid boundary is dictated by the
volume of ponding, V:

(3)

where b is the radial distance to the fluid boundary, Wb is the vertical membrane displacement
at r = b, and b must be in the range 0 ~ b ~ a. The potential drop of the ponding load is

J
'b [(W-W)]

Q = -2yn 0 (W-Wb) Wb+ 2 b rdr (4)

where y is the unit weight of the fluid. The pressure distribution, p(r), acting perpendicular
to the deformed surface of the membrane, depends upon the location of the fluid boundary

p(r) = '((w- w,,) for 0 ~ r ~ b

p(r) = 0 for b ~ r ~ a.

(5)

(6)

Based on the large deflection theory of plates (Timoshenko and Woinowsky, 1959),
the strain-displacement relations for a circular membrane are

. _ du. ~(dW)2
Gr - dr + 2 dr

U
GO "" -.

r

The stress-strain relations for elastic material response are

(7)

(8)
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(9)

(10)

Substituting eqns (2), (4), (7) and (8) into eqn (1), the total potential energy of the system
can be expressed in terms of membrane displacements as

(11)

where a prime denotes differentiation with respect to r. The variation in total potential
energy, Ml due to virtual displacements bu and bw is

nEt fa[ 2ubIT = --0 2u'bu' -+ (W')2 bu' +2u'w'bw' + (w') J bw' + --;- bu
I-v- 0 r

2vu' 2vu V(W')2 2vuw' ] fh
+ -bu+ -bu' + ~---bu+ ---bl1/ rdr-2rn (w-wh)bwrdr.

r r r r 0

Integrating eqn (12) by parts gives:

fa 2u'bu'r dr = 2ru'bu I" - ra

2(u' + ru")bu dr
o 0 ./0

fa la f"(w')2bu'rdr = r(w')2bu - [(W')2 +2nv'w"]bu dr
o 0 ()

fa I" fao 2vubu'dr = 2vubu () - () 2vu'bu dr

fa I" faJo 2ru'w'bw' dr = 2ru"w'b\1: () - Jo (21/w' + 2ru"w' + 2ru'w")bw dr

fa 2vuw'bw' dr = 2vuw'bw 1° - fa (2vu'w' -+ 2vuw")bw dr.
Jo () Jo

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Forced boundary conditions require that u = 11" = 0 at the membrane center (r = 0) and
that u = w = 0 at the simple support (r = a). Therefore, bu and w' = 0 at r = 0 and bu and
bw = 0 at r = a. The principle of minimum potential energy requires that bIT = 0 for any
combinations of bu and bw, which are mutually independent, arbitrary virtual displacements
compatible with the forced boundary conditions.
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3. EQUATIONS OF EQUILIBRIUM

Grouping all the terms involving (ju yields

nEt fU[ 2UJ
--1 2u' +2ru" +(1-V)(W')2 +2nv'w" - - (judr = O.
1- V- 0 r

(19)

Since (ju is arbitrary, the integrand in the brackets in eqn (19) must vanish. This integrand
is the equilibrium equation in the radial direction. Using eqns (7)-(10), this equation of
equilibrium can be expressed alternatively in terms of membrane stresses as

(20)

Grouping all the terms involving (jw yields

fh{ nEt [u'w' (W')3 3 vu'w' VUW"J-- -- +u"w'+u'w"+ --- + _(W')2 W"+ ---+--
o I - v2 r 2r 2 r r

Since (jw is arbitrary, the integrand in the braces in eqn (21) must vanish. Note that this
integrand is the equation of equilibrium for 0 ~ r ~ b in the vertical direction which can
be expressed alternatively as

dO" (dW) 0" (dW·) (d
2
W)"_r __ + ---': +a

r
- + I'(W-lVh) = O.

dr dr r dr dr2 t

The equation of equilibrium for b ~ r ~ a in the vertical direction is

~~(dW) + ~(~~)+ O"r (d2IV) = O.
dr dr r dr dr2

(22)

(23)

These equations of equilibrium must be satisfied whether the membrane material response
is elastic or not.

4. NUMERICAL SOLUTION TO ELASTIC MEMBRANE RESPONSE

The finite elastic deformation of circular membranes under prescribed axisymmetric
pressure loading has been studied extensively (e.g., Kao and Perrone, 1971; Kelkar et al.,
1985). However, an iterative algorithm must be included in the solution procedures for a
ponding problem since the pressure loading is not known in advance.

4.1. Membranes under full ponding loads
Epstein and Strnad (1985) showed that eqns (20) and (22) can be reduced to two

coupled nonlinear differential equations in terms of IV and O"r:
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dar (dW) ar(dW) (d
2
W)}'- - +- -- +ar .~ +-w=O

dr dr r dr dr2 t

with the natural boundary conditions

dar
- = 0 atr = 0
dr

and
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(24)

(25)

(26)

(
dar)ar(l-v) +r (l; = I) at r = a (27)

provided that the membrane is under full ponding load and made of a Hookean material
with Young's modulus E and Poisson's ratio v. The vertical deflection wand radial stress
ar of the membrane are first solved simultaneously by numerically integrating dar/elr and
dw/dr in eqns (24) and (25) using the fourth-order Runge-Kutta method. Initial guesses of
a r and ware required in order to propagate solutions from center of the membrane to the
edge of the membrane. The circumferential stress a r! is next calculated from eqn (20), and
the horizontal displacement u is calculated from eqn (8) once the circumferential strain eo is
determined from the stress-strain relations, i.e., eqns (9) and (10). The boundary conditions
u = w = 0 and eqn (27) are used as checks at r = a.

4.2. Membranes under partial ponding loads
The numerical solution algorithm is modified slightly for membranes under partial

ponding loads. An initial depth of ponding, w* = IV - Wb at the membrane center is assumed
at the beginning of the numerical integration for a given fluid boundary b. Then eqn (22)
is integrated along with eqn (24) simultaneously until the fluid boundary (r = b) is reached.
The true value of w* should be zero at this point and eqn (23) is integrated along with eqn
(24) from this point out to the support. The value thus obtained at the support (r = a)
should be w* = - W h and the deformed shape of the membrane can be recovered by
W = W*+Wb'

4.3. Numerical example
A simply supported circular membrane made of a stainless steel was subjected to

hydrostatic (y = 9.8 kN/m3
) ponding loads. Its geometric and material properties are given

in Table 1. The membrane was loaded until the water boundary was at 25%, 50%, 75%,
and 100% of the membrane radius, respectively. Numerical solutions to these load cases
were obtained by using the fourth-order Runge-Kutta method with an integration step of

Table 1. Geometric and material properties of the test membrane

Physical parameters
(1 )

Membrane material
Membrane radius, a
Membrane thickness. r
Young's modulus, E
Poisson's ratio, v
Yield stress, (J"

Yield strain, £;
Ultimate stress, (Ju

Ultimate strain, £u

Data
(2)

304 stainless steel
1.857 m (73.1 in)
0.051 mm (0.002 in)
208 GPa (30,000 ksi)
0.33
240 MPa (34 kSI)
0.00115
476 MPa (68 kSI)
0.08
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Fig. 2. Nonnalized membrane deformed shapes under various levels of ponding.

0.019 in (0.0483 cm). The deformed shapes (i.e., r+ u(r) vs w(r)) of the membrane are
presented in Fig. 2, where the vertical deflections are normalized to the W o when ponding
was full. It was noted that the horizontal displacements were at least one order of magnitude
smaller than the vertical deflections of the membrane, and thus their effects on the deformed
shapes are insignificant. The horizontal displacement shapes are presented in Fig. 3, where
the maximum displacement amplitudes were normalized to 1. Variations in the radial and
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Elastic Membrane
Radial & Circumferential Stresses
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circumferential stresses along a radial line are depicted in Fig. 4. The curvature of the
deformed membrane in the meridional direction can be expressed in terms of u(r) and w(r)
as

I

R
(28)

where R is the local radius of curvature. There is a discontinuity in the curvature at the
fluid boundary (i.e., at r = b) where the slope remains continuous. In addition, an inflection
point (curvature = 0) forms inside the ponding as shown in Fig. 5. These characteristics
were also observed by Szyszkowski and Glockner (1984) in their investigation of the
behavior of inflatable structures under ponding loads.

A finite element solution algorithm using ANSYS (Kohnke, 1993) code was developed
to investigate the membrane deformations under ponding loads, for elastic membranes as
well as for membranes where inelastic material behavior became significant. The membrane
was modeled with 80 axisymmetric conical shell elements spanning from the center to the
edge of the membrane. The shell elements were assigned the elastic material properties
given in Table 1 for the membrane. The flowchart of this algorithm is shown in Fig. 6. The
membrane response parameters obtained from the ANSYS simulations under partial to
full ponding loads were virtually identical to those obtained by the fourth-order Runge
Kutta method and are presented in Table 2. Figure 7 provides a means to determine the
maximum strain at membrane center and the radial distance to the water boundary for a
given volume of ponding. The logic of the iterative finite element solution procedure was
thus proven to be accurate by the independent solutions from direct numerical integration.

5. MEMBRANE FORMING EXPERIMENT WITH PONDING LOADS

Large reflector surfaces of high optical quality are attainable with the use of pressure
formed membranes. Among many alternate forming techniques, the "free-form yielding"
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bfa

process, in which an initially flat membrane is plastically formed to a parabolic shape in
the absence of a mold or mandrel, was successfully implemented by the engineering staff of
Solar Kinetics, Inc., Dallas, Texas. The forming experiment provided the necessary data
for the validation of the finite element simulation procedure developed to predict the
inelastic response of a circular membrane under ponding loads.

5.1. Forming experiment setup
Test membranes were stretched over a 12 ft (3.71 m)-diameter steel cylinder, 14 in

(0.36 m) tall and 0.75 in (19 mm) thick, before forming. The cylinder and its fitted flanges
provided a rigid circumferential support for the test membranes. An initial parabolic shape
with a center deflection of 0.965 in (2.45 cm) was first induced by slightly vacuuming
the plenum behind the membrane. Next, the membrane was gradually loaded under the
axisymmetric nonuniform pressure distribution due to water accumulation on the mem
brane surface as shown in Fig. 8(a). When the water level reached the membrane edge, the
vacuum pressure was increased to induce additional ponding. This process was repeated
until a desirable I~'o was reached. A membrane surface was plastically formed after the fluid
was gradually removed, also in an axisymmetric fashion, and a uniform stabilization
pressure was applied to minimize the elastic rebound of the membrane. Membrane deflec
tion and strain data were taken at the end of each successive loading when ponding was
full. Membrane deflections at discrete points along a diametrical line was measured directly.
The membrane slopes were calculated from the deflection data. Bi-directional strain gages
were installed at the membrane center and the edge to measure the radial and circumferential
strains at those locations. Figure 8(b) shows a plastically formed stainless steel membrane.

5.2. Finite element simulation of the fa rTning experiment
A reliable model was required to predict the deformed membrane shapes in the forming

experiments in order to determine the slope errors of formed surfaces from the desired
parabolic shape. The iterative finite element solution scheme was used in the simulation of
the membrane forming process under the gradual application of ponding load. The test
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Define membrane's geometric
and material parameters

Define boundary conditions

Apply a small uniform
pressure loading to induce
an initial deflection

Apply water pressure based
on previous deflected shape
for water level at a spe
cified node location (with
additional uniform pressure,
if any) and calculate new
deflected shape
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Fig. 6. Logic of the solution algorithm.

Table 2. Elastic membrane response under partial and full ponding loads

b Wo Wh V Umax (JuCtYr = 0 l1rCljjr = a (J"@r = a
(em) (em) (em) (em') (mm) (MPa) (MPa) (MPa)
(I) (2) (3) (4) (5) (6) (7) (8)

20.89 0.42 0.37 30.36 0.000395 1.62 0.33 0.11
(0.421 ) (0.367) (33.42) (0.000427) (1.702) (0.333) (0.1\ 0)

44.10 1.05 0.81 667.28 0.004 7.64 2.43 0.80
(1.053) (0.811) (666.88) (0.00404) (7.647) (2.429) (0.802)

67.32 1.72 1.16 3635.0 0.014 17.84 7.40 2.44
(1.724) (1.158) (3710.0) (0.0143) (17.850) (7.399) (2.445)

90.53 2.39 1.36 12236.0 0.035 32.36 16.Q2 5.30
(2.397) (1.364) (1\999.0) (0.0347) (32.366) (16.020) (5.301)

1l3.74 3.06 1.40 31012.0 0.0686 51.29 28.86 9.57
(3.055) (1.400) (30390.0) (0.0684) (51.310) (28.856) (9.566)

136.95 3.70 1.24 66953.0 0.118 74.88 46.33 15.40
(3.693) (1.235) (65595.0) (0.1180) (74.906) (46.327) (15.395)

160.17 4.31 0.82 130518.0 0.1862 103.55 68.78 22.94
(4.313) (0.826) (127858.0) (0.1856) (103.577) (68.779) (22.937)

185.70 5.00 O. 253362.0 0.283 141.98 99.64 33.43
(4.994) (0.) (253185.0) (0.2824) (142.02) (99.645) (33.428)

Note: The tabulated values were the results obtained by using the fourth-order Runge-Kutta numerical integration
and ANSYS simulation results are shown in parentheses.
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membrane having the geometric and material properties given in Table 1 was modeled with
80 axisymmetic conical shell elements spanning from the center to the edge of the membrane.
The stress-strain curve from a tension test of a I-in. (2.54-cm) wide, 0.002-in (0.05I-mm)
thick strip of annealed, 304 stainless steel is shown in Fig. 9. The constitutive behavior of
the 304 stainless steel was idealized as to follow the Prandtl-Reuss flow rule associated with
the von Mises yield criterion (Mendelson, 1968). The stress stiffening effect due to membrane
tension and the correction of load vectors for large deflections and rotations were also
included in the finite element analysis. Since inelastic deformation is a load-path dependent
process, the loading sequence in the forming experiment was closely followed in the6mite
element simulation. The numerical results are compared against the test data in Table 3. In
load step No. I, the initial membrane deflection induced by the vacuum resulted in
additional ponding and produced a Wo about 20% more deflection under full ponding than
the membrane center deflection obtained for an initially flat membrane. It was noted that
all the predicted values compared very well with the experimental data except for the radial
stresses measured at the membrane edge. The measured radial stresses at membrane edge
appeared to be in error, since the ultimate tensile stress of 304 stainless steel is 68 ksi (476
MPa) at rupture.

The von Mises criterion predicts that yielding begins when the equivalent stress, (J.,

reaches the yield strength, (J)" The equivalent stress is defined as

(29)

where (Jl, (J2, and (J3 are the principal stresses. For a membrane, the equivalent stress is
calculated as

(30)

The variations of the equivalent stresses along a radial direction are shown in Fig. 10 for
the load steps 4, 7 and 10. The membrane deflected shapes for these load steps normalized
with respect to W o in load step I are presented in Fig. 11.



Ponding on circular membranes

Fig. 8. (al Forming experiment using hydrostatic pressure; (b) a plastically formed stainless steel
test membrane.
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Table 3. Comparison of results

Load step I 2 3 4 5 6 7 8 9 10
Vacuum (Pa) 0.0 684.0 1867.0 3485.0 3858.0 5290.0 5538.0 7094.0 7219.0 7592.0

V (m') 0.341 0491 0.791 1.198 1.332 1.636 1696 1959 2.032 2.167
(0.330) (0445) (0.788) (1216) (1.307) (1628) (1.680) (1986) (2.011) (2.126)

W, (em) 6.31 9.08 14.60 22.13 2460 3020 31.30 36.18 37.52 39.99
(6.59) (845) (15.03) (22.83) (2448) (30.22) (31.13) (36.44) (36.85) (38.11)

Slope C~ r = a 3.88 5.58 8.94 13.40 14.83 18.01 18.64 21.28 2199 23.32
(deg.) (3.12) (4.85) (839) (12.94) (13.89) (17.24) (17.78) (20.86) (2112) (2195)

a, r=a 166.0 424.0 605.0 713.0 714.0 787.0 794.0 873.0 863.0 860.0
(MPa) (140.0) (260.0) (334.0) (372.0) (379.0) (403.0) (407.0) (4310) (432.0) (435.0)

s, :~a r = 0 1000.0 2000.0 4000.0 9000.0 12000.0 17000.0 19000.0 25000.0 27000.0 30000.0
(micro) (862.0) (1546.0) (5497.0) (11433) (12752) (16987) ( 17523) (20536) (20694) (21169)

Note: The tabulated values were test data obtained from membrane forming experiment and ANSYS simulation results are shown
in parentheses.

6. CONCLUSIONS

The highly nonlinear problems of ponding on circular membranes have been solved
with excellent accuracy by the fourth-order Runge-Kutta numerical integration as well as
by finite element simulation.

The elastic horizontal displacement u(r) of the membrane obtained under full ponding
load was found to be at least one order of magnitude smaller than the vertical deflection
w(r). For membranes under partial ponding loads, the horizontal displacements were even
smaller (see Table 2) such that their effect on the membrane deformed shapes was negligible.

Under partial ponding loads, the curvature of the deformed membrane shape shows a
discontinuity at the fluid boundary while an inflection point (i.e., zero curvature) forms
inside the ponding. This characteristic of membrane ponding problem was also reported
by Szyszkowski and Glockner (1984).
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Membranes under partial ponding loads were solved using the same numerical solution
algorithm as for full ponding load except with a linear transformation, w* = W - Wb' An
iterative finite element solution algorithm using ANSYS code was also developed for the
solution to the membrane ponding problems. In the elastic membrane response analyses,
the finite element simulation results were virtually identical to those obtained by the fourth
order Runge-Kutta numerical integration (see Table 2). The finite element simulation
algorithm was thus proven to be accurate and then used in the simulations of membrane
forming experiments where inelastic material response became significant. This numerical
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simulation procedure has proven to be very accurate when validated against test data from
the membrane forming experiments.
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